Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JIMD Rep ; 64(5): 327-336, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701325

RESUMO

Glycogen storage type V (GSD V-McArdle Syndrome) is a rare neuromuscular disorder characterised by severe pain early after the onset of physical activity. A recent series indicated a diagnostic delay of 29 years; hence reports of children affected by the disorder are uncommon (Lucia et al., 2021, Neuromuscul Disord, 31, 1296-1310). This paper presents eight patients with a median onset age of 5.5 years and diagnosis of 9.5 years. Six patients had episodes of rhabdomyolysis with creatine kinase elevations >50 000 IU/L. Most episodes occurred in relation to eccentric non-predicted activities rather than regular exercise. One of the patients performed a non-ischaemic forearm test. One patient was diagnosed subsequent to a skeletal muscle biopsy, and all had confirmatory molecular genetic diagnosis. Three were homozygous for the common PYGM:c.148C > T (p.Arg50*) variant. All but one patient had truncating variants. All patients were managed with structured exercise testing to help them identify 'second-wind', and plan an exercise regimen. In addition all also had an exercise test with 25 g maltodextrin which had statistically significant effect on ameliorating ratings of perceived exertion. GSD V is under-recognised in paediatric practice. Genetic testing can readily diagnose the condition. Careful identification of second-wind symptomatology during exercise with the assistance of a multi-disciplinary team, allows children to manage activities and tolerate exercise. Maltodextrin can be used for structured exercise, but excessive utilisation may lead to weight gain. Early intervention and education may improve outcomes into adult life.

2.
Front Genet ; 13: 1031495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561316

RESUMO

Non-coding regions are areas of the genome that do not directly encode protein and were initially thought to be of little biological relevance. However, subsequent identification of pathogenic variants in these regions indicates there are exceptions to this assertion. With the increasing availability of next generation sequencing, variants in non-coding regions are often considered when no causative exonic changes have been identified. There is still a lack of understanding of normal human variation in non-coding areas. As a result, potentially pathogenic non-coding variants are initially classified as variants of uncertain significance or are even overlooked during genomic analysis. In most cases where the phenotype is non-specific, clinical suspicion is not sufficient to warrant further exploration of these changes, partly due to the magnitude of non-coding variants identified. In contrast, inborn errors of metabolism (IEMs) are one group of genetic disorders where there is often high phenotypic specificity. The clinical and biochemical features seen often result in a narrow list of diagnostic possibilities. In this context, there have been numerous cases in which suspicion of a particular IEM led to the discovery of a variant in a non-coding region. We present four patients with IEMs where the molecular aetiology was identified within non-coding regions. Confirmation of the molecular diagnosis is often aided by the clinical and biochemical specificity associated with IEMs. Whilst the clinical severity associated with a non-coding variant can be difficult to predict, obtaining a molecular diagnosis is crucial as it ends diagnostic odysseys and assists in management.

3.
Mol Genet Metab ; 137(1-2): 62-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35926322

RESUMO

BACKGROUND: Beta-ureidopropionase deficiency, caused by variants in UPB1, has been reported in association with various neurodevelopmental phenotypes including intellectual disability, seizures and autism. AIM: We aimed to reassess the relationship between variants in UPB1 and a clinical phenotype. METHODS: Literature review, calculation of carrier frequencies from population databases, long-term follow-up of a previously published case and reporting of additional cases. RESULTS: Fifty-three published cases were identified, and two additional cases are reported here. Of these, 14 were asymptomatic and four had transient neurological features; clinical features in the remainder were variable and included non-neurological presentations. Several of the variants previously reported as pathogenic are present in population databases at frequencies higher than expected for a rare condition. In particular, the variant most frequently reported as pathogenic, p.Arg326Gln, is very common among East Asians, with a carrier frequency of 1 in 19 and 1 in 907 being homozygous for the variant in gnomAD v2.1.1. CONCLUSION: Pending the availability of further evidence, UPB1 should be considered a 'gene of uncertain clinical significance'. Caution should be used in ascribing clinical significance to biochemical features of beta-ureidopropionase deficiency and/or UPB1 variants in patients with neurodevelopmental phenotypes. UPB1 is not currently suitable for inclusion in gene panels for reproductive genetic carrier screening. SYNOPSIS: The relationship between beta-ureidopropionase deficiency due to UPB1 variants and clinical phenotypes is uncertain.


Assuntos
Transtornos dos Movimentos , Erros Inatos do Metabolismo da Purina-Pirimidina , Humanos , Encefalopatias/diagnóstico , Encefalopatias/genética , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Fenótipo , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Amidoidrolases/genética
4.
Genet Med ; 22(7): 1254-1261, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32313153

RESUMO

PURPOSE: The utility of genome sequencing (GS) in the diagnosis of suspected pediatric mitochondrial disease (MD) was investigated. METHODS: An Australian cohort of 40 pediatric patients with clinical features suggestive of MD were classified using the modified Nijmegen mitochondrial disease severity scoring into definite (17), probable (17), and possible (6) MD groups. Trio GS was performed using DNA extracted from patient and parent blood. Data were analyzed for single-nucleotide variants, indels, mitochondrial DNA variants, and structural variants. RESULTS: A definitive MD gene molecular diagnosis was made in 15 cases and a likely MD molecular diagnosis in a further five cases. Causative mitochondrial DNA (mtDNA) variants were identified in four of these cases. Three potential novel MD genes were identified. In seven cases, causative variants were identified in known disease genes with no previous evidence of causing a primary MD. Diagnostic rates were higher in patients classified as having definite MD. CONCLUSION: GS efficiently identifies variants in MD genes of both nuclear and mitochondrial origin. A likely molecular diagnosis was identified in 67% of cases and a definitive molecular diagnosis achieved in 55% of cases. This study highlights the value of GS for a phenotypically and genetically heterogeneous disorder like MD.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Austrália , Criança , Mapeamento Cromossômico , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação
5.
Mol Genet Metab ; 126(1): 77-82, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30558828

RESUMO

BACKGROUND: In almost half of patients with acute liver failure the cause is unknown, making targeted treatment and decisions about liver transplantation a challenge. Monogenic disorders may contribute to a significant proportion of these undiagnosed patients, and so the incorporation of technologies such as next generation sequencing (NGS) in the clinic could aid in providing a definitive diagnosis. However, this technology may present a major challenge in interpretation of sequence variants, particularly those in non-coding regions. RESULTS: In this report we describe a case of Infantile liver failure syndrome 2 (ILFS2; MIM 616483) due to novel bi-allelic variants in the NBAS gene. A missense variant NM_015909.3(NBAS):c.2617C > T, NP_056993.2(NBAS):p.(Arg873Trp) was identified by whole genome sequencing (WGS). By combining WGS and reverse transcription-polymerase chain reaction (RT-PCR) we were able to identify a novel deep intronic variant, NM_015909.3(NBAS):c.2423 + 404G > C, leading to the inclusion of a pseudo-exon. This mechanism has not been described previously in this syndrome. CONCLUSIONS: This study highlights the utility of analyzing NGS data in conjunction with investigating complementary DNA (cDNA) using techniques such as RT-PCR for detection of variants that otherwise would be likely to be missed in common NGS bioinformatic analysis pipelines. Combining these approaches, particularly when the phenotype match is strong, could lead to an increase in the diagnostic yield in acute liver failure and thus aid in targeted treatment, accurate genetic counseling and restoration of reproductive confidence.


Assuntos
Variação Genética , Íntrons , Falência Hepática Aguda/genética , Proteínas de Neoplasias/genética , Alelos , Criança , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Falência Hepática Aguda/diagnóstico , Transplante de Fígado , Mutação , Fenótipo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...